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When should a radiologist stop searching for abnormalities in 
your X-rays? How long should an airport baggage screener 
search through your luggage? When should a soldier stop look-
ing for enemy combatants in a crowded town square? Further-
more, how should these policies be modified after a target is 
found? Searching for important objects in clutter is a ubiqui-
tous real-world task and has been systematically studied in  
an effort to uncover the mechanisms of visual attention (see 
Eckstein, 2011; Nakayama & Martini, 2011, for recent reviews). 
Most prior research has used visual search as a tool to study 
visual attention and has focused on searches for a single target; 
however, some of the most important real-world visual search 
tasks, such as those conducted by radiologists, baggage screen-
ers, and military personnel, are multiple-target searches that 
may contain many targets in a single display. For example, a 
medical X-ray scan can contain an unknown and unbounded 
number of potential abnormalities. This presents an interesting 
problem to the searcher—when to stop searching.

When searching for multiple targets, people are prone to 
overlook some of them (resulting in miss errors). Specifically, 
searchers are vulnerable to satisfaction-of-search errors  
(Tuddenham, 1962), in which targets that would likely be 
spotted in a single-target display are missed in a multiple-tar-
get display. Satisfaction-of-search errors may account for 

nearly 40% of misses in radiology (see Berbaum, Franklin, 
Caldwell, & Schartz, 2010, for a review) and are exacerbated 
by searcher anxiety (Cain, Dunsmoor, LaBar, & Mitroff, 
2011). One can minimize miss errors by exhaustively inspect-
ing every potential target; however, exhaustive search is pro-
hibitively costly and inefficient in most situations, so usually 
searchers must stop without thoroughly inspecting every ele-
ment of the display. Consequently, when the number of targets 
is unknown, efficient search requires tailoring a stopping deci-
sion to the distribution of targets across displays.

Prior evidence suggests that people adjust their search 
behavior on the basis of some aspects of the target distribution. 
Even in single-target search, target prevalence influences deci-
sion criteria, resulting in more false alarms (i.e., incorrect 
reports that a target is present) when targets are common and 
more misses when they are uncommon (Godwin et al., 2010; 
Wolfe et al., 2007; Wolfe & Van Wert, 2010). Similarly, in 
multiple-target search, errors are influenced by the base rates 
of specific targets, with less-frequent targets missed more 
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Abstract

Real-world visual searches often contain a variable and unknown number of targets. Such searches present difficult 
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often than more-frequent targets (e.g., Fleck, Samei, & Mitroff, 
2010). It is important to note that these prevalence effects are 
driven implicitly by experience with particular search environ-
ments rather than explicitly by top-down expectations, such as 
instructions (Lau & Huang, 2010). These data suggest that 
human search behavior adjusts to environmental statistics, but 
they raise a number of important questions for real-world 
search: Are these adaptations appropriate for the learned sta-
tistics of the search displays? How sophisticated are the envi-
ronmental statistics used to guide search strategies? Finally, 
how do people use these statistics to decide when to stop 
searching when the number of targets is unknown?

Although the effects of the search environment have not 
been well explored in humans, there is an extensive literature 
on animal foraging that has formalized how nonhumans make 
use of the statistical properties of their environments (see  
Stephens & Krebs, 1986, for a review). Optimal foraging the-
ory provides a rational analysis of the behavior of animals 
consuming food from a number of “patches,” formally answer-
ing questions such as “When should a blue jay stop eating 
from one cherry tree and move to another?” The key insight of 
optimal foraging theory is that an organism should strive to 
maximize its rate of energy intake, rather than, say, ensuring 
that it has consumed all available food. Thus, an organism 
should leave one location and move to the next when the 
instantaneous rate of energy intake for the current location 
falls below the expected rate for the environment as a whole. 
In short, a forager should aim to spend time in locations with 
above-average quantities of food and leave them once those 
quantities drop below average. This model has been applied 
almost exclusively to analyze animal behavior, but some work 
suggests that human behaviors may follow similar patterns 
(e.g., Hutchinson, Wilke, & Todd, 2008; Pirolli, 2007). In the 
current study, we presented people with complexly structured 
search environments and evaluated how well they adapted to 
them by comparing their behavior with that of an optimal for-
aging model instantiating Bayesian learning.

Method
In this study, we investigated whether human observers 
adjusted their search strategies in response to complex target-
distribution statistics. Participants searched for T-shaped tar-
gets among pseudo-L-shaped distractors (Fig. 1) and were 
awarded 15 points for each target found, with the experiment 
ending when they accumulated 2,000 points. There were no 
penalties for misses or false alarms. Participants were assigned 
to three different groups, with each group observing different 
distributions of the number of targets present per display; cru-
cially, the overall target prevalence (Wolfe et al., 2007) was 
matched across conditions: one target per trial, on average. 
The number of targets on each target-present trial was sampled 
from a geometric distribution, with the rate parameter adjusted 
to yield this overall prevalence; however, we manipulated the 

rate at which target-present trials occurred. In the 25% condi-
tion, only one quarter of the trials had at least one target, but 
those trials were likely to contain many targets. In the 50% 
condition, half of the trials had at least one target, and of those 
trials, half had one target and half had more than one. In the 
75% condition, three quarters of the trials had at least one tar-
get, but those trials were unlikely to contain more than one 
target. Did people adjust their search strategies based on these 
target distributions?

Participants and conditions
Sixty-two members of the Duke University community par-
ticipated for partial fulfillment of a course requirement or a 
$10 payment. Nine participants were excluded for failing to 
complete the experiment in less than 75 min,1 and a further 8 
participants were excluded for making false alarm responses 
on 25% or more of the trials. There was no difference in the 
number of excluded participants across conditions, χ2(2, N = 
17) = 2.22, p = .329. The remaining 45 participants (17 males 
and 28 females) ranged in age from 18 to 48 years (median = 
23).

Each participant was randomly assigned to one of three 
between-participants conditions that differed in the number of 
trials containing targets but with the expected number of tar-
gets per trial held constant (Fig. 2). In the 25% condition, only 
one quarter of the trials had one or more targets. In the 50% 
condition, half of the trials had one or more targets. In the 75% 
condition, three quarters of the trials had one or more targets. 
The number of targets on each target-present trial was sampled 
from a geometric distribution, with the rate parameter adjusted 
per condition to yield the same overall average of one target 

Fig. 1.  Sample search array used in the experiment. Stimuli consisted of 
pairs of rectangles, with the members of each pair oriented perpendicularly 
to each other to form perfect T shapes (targets) or pseudo-L shapes 
(distractors). All displays contained 40 items (27%–65% black), 0 to 12 of 
which were targets (6 are present in this example). Stimuli were presented 
on a background of gray-scale “clouds.”
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per trial. In the 25% condition, there were a maximum of 12 
targets per trial. In the 50% condition, up to 8 targets per trial 
were presented in the display, and in the 75% condition, there 
were up to 4 targets per trial. These target distributions pro-
vided complex, but informative, target-prevalence statistics.

Procedure
Stimuli were presented on Dell Inspiron computers with 20-in. 
CRT monitors and were programmed in MATLAB (The Math-
Works, Natick, MA) using the Psychophysics Toolbox (Ver-
sion 3.0.8; Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; 
Pelli, 1997). Observers were seated approximately 50 cm from 
the screen. Each trial began with a black 1.5° × 1.5° fixation 
cross, which appeared for 0.5 s at the center of a white screen. 
The cross was replaced with a search array of 40 pairs of gray 
rectangles (27%–65% black; Fig. 1). Each pair was contained 
within an invisible 1.3° × 1.3° square. The members of each 
pair were oriented perpendicularly to each other and slightly 
separated. Targets were perfect T shapes, and distractors were 
pseudo-L shapes. Targets and distractors were randomly posi-
tioned within the search array. The search array was presented 
on a background of gray-scale “clouds” (4%–37% black). 
Intertrial intervals lasted 3 s each.

Participants were awarded 15 points for each target found, 
with the experiment ending when they reached 2,000 points, 
that is, 134 found targets. These values were selected based on 
pilot testing so that an experimental session was expected to 
last just under 1 hr, with participants taking 54 min, on average. 
There were no penalties for misses or false alarms. Participants 
made a localization mouse click on each target they found 
(which was then marked with a small 0.2° × 0.2° blue circle). 
Once they decided to terminate a search, they clicked a button 
labeled “Done” to end that trial. A 3-s feedback screen after 
each trial revealed all the targets that were present to provide all 
participants with the same information about the target distri-
bution regardless of their performance. The experiment began 
with a practice block that had a 120-point goal to familiarize 
participants with the target distribution in their conditions.

Results

Participants produced false alarms on 6.14% of trials, with no 
difference in false alarm rates among conditions, F(2, 42) = 
0.38, p = .684; these trials were excluded from further analy-
ses. Overall, 26.39% of all targets were missed, again with no 
differences between conditions, F(2, 42) = 1.86, p = .168. 
These metrics suggest that overall search dynamics were com-
parable across conditions.

Although coarse search behavior was similar across distri-
bution conditions, adjusting to these distributions predicted 
fine-grained differences in the search dynamics. Specifically, 
we were interested in how long it took the participants to 
decide to stop searching: How long did they search after find-
ing the last target on a trial (even if not all targets were found)? 
We operationalized this question as the time between the last 
click on a target and a click on the “Done” button. Figure 3a 
plots this difference measure against the number of targets 
found in each condition. The main pattern is clear: The more 
targets that were likely to be in a display, the longer partici-
pants continued searching before terminating their search. 
This was confirmed with a 3 × 4 mixed model analysis of vari-
ance (ANOVA) with condition (25%, 50%, or 75%) and num-
ber of targets found (0, 1, 2, or 3) as factors.2 There were 
significant main effects of condition, F(2, 126) = 4.86, p = 
.013, and of number of targets found, F(3, 126) = 161.48, p < 
.001, and a significant interaction between these factors, F(6, 
126) = 5.08, p < .001.

This interaction reveals a number of key features: When no 
targets had been found, participants searched longer if they 
were in a condition in which trials were more likely to have at 
least one target than did participants in conditions in which 
trials with targets occurred less often (i.e., 75% condition  
> 50% condition > 25% condition, which is a significant linear 
trend), F(1, 42) = 5.54, p = .023. However, once a single target 
was found, the pattern reversed: Participants in conditions in 
which target displays tended to contain more targets searched 
for a second target longer than did participants in conditions in 
which multiple-target trials were rarer (i.e., 25% condition  
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Fig. 2.  Distribution of the number of targets present in each display in the three conditions. In all conditions, the expected number of targets 
per trial was one, but the proportion of trials with targets differed across conditions.



1050		  Cain et al.

> 50% condition > 75% condition); significant linear trends 
for one, two, and three targets were found across conditions 
(all ps < .02). This pattern also held for two, three, and four 
targets found.

Overall rate of target finding

We assume searchers aim to maximize Γ, their rate of finding 
targets across the whole experiment (thus, minimizing the 
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Fig. 3.  Time spent unsuccessfully searching for an additional target as a function of the number of targets found before terminating the search 
in each condition. The graphs show (a) behavioral results (with expected values expressed in targets per second), (b) results for an ideal 
observer derived from a Bayesian optimal foraging model, and (c) results from the Bayesian model including participants’ prior expectations 
that targets tend to appear on about half of the trials and tend to be distributed homogeneously. The value for four targets is not plotted for 
the 75% condition, as fewer than half the participants in this condition found four targets in a single display. Error bars show standard errors 
of the mean.
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total time to accumulate 2,000 points and finish the experi-
ment), which can be represented by the following formula:

Γ = 
t– + τ

, 

where n– is the average number of targets found per trial, t– is 
the average time spent searching per trial, and τ is the constant 
intertrial interval (3 s in the current experiment). A higher Γ 
indicates that a searcher spent less time searching unrewarding 
displays and more time searching displays with many targets.

We calculated Γ for each searcher. A one-way ANOVA with 
condition (25%, 50%, or 75%) as a factor revealed that Γ  
did not differ among distribution conditions (25% condition:  
Γ = 0.045 ± 0.008 targets/s, 50% condition: Γ = 0.042 ±  
0.006 targets/s, 75% condition: Γ = 0.044 ± 0.010 targets/s), 
F(2, 42) = 0.44, p = .647. This null effect reflects both a lack of 
differences in n– and a lack of differences in t–: Participants 
found an average of 0.78 targets per display and spent an aver-
age of 14.47 s searching each display, with no differences 
between groups on either measure, F(2, 42) = 0.94, p = .398, 
and F(2, 42) = 0.08, p = .926, respectively. Thus, despite 
searching under different target distributions, each group set-
tled on the same average target-acquisition rate (both finding 
similar numbers of targets and taking the same overall time to 
do so), a behavior that could arise only if searchers were adapt-
ing their behavior to the statistics of their search environment.

Bayesian optimal foraging model
We modeled participants’ decisions to continue searching any 
one display in our experiment using the optimal foraging 
model that is used to describe how, for example, blue jays 
choose whether to continue foraging a given cherry tree. Spe-
cifically, the marginal value theorem (Charnov, 1976) predicts 
that an optimal forager should abandon a search at its current 
location when the instantaneous rate of return of the current 
location reaches the overall rate of return for the environment. 
This principle predicts behavior across a wide range of spe-
cies, including parasitic insects (Wajnberg, Fauvergue, & 
Pons, 2000), rats (Mellgren, 1982), birds (Ydenberg, 1984), 
and monkeys (Hayden, Pearson, & Platt, 2011). However, the 
marginal value theorem does not perform well when locations 
may contain only a few targets, as was the case in our experi-
ment (Biernaskie, Walker, & Gegear, 2009; McNamara, 
Green, & Olsson, 2006). For this reason, we employed the 
potential value theorem (McNamara, 1982; Olsson & Brown, 
2006), which extends the marginal value theorem to such dis-
crete cases by positing that foragers leave their current loca-
tion when the predicted value of staying is less than the 
predicted value of searching a new location. Such a forager 
updates its value prediction for the current location at each 
point in time, noting how much time was spent searching and 
how many targets were found. We implemented this prediction 
of value via a Bayesian ideal observer sensitive to the across-
trial target distribution.

Bayesian potential value estimation

Under the potential value theorem, searchers should calculate 
the potential value of the current display, Π. With small num-
bers of targets, each of which is found independently, Π is the 
ratio of the expected probability of the next item searched 
being a target and the time it will take to search that additional 
item. When Π falls below Γ, the searcher should move on to a 
new display. To calculate Π, we used a Bayesian ideal observer 
that starts every trial with a prior over the total number of tar-
gets, p(T), which reflects the learned distribution of targets 
across displays. Then the ideal observer computes the poste-
rior probability of the total number of targets, p(T|F, S), after 
having found F targets having searched S items on this dis-
play: p(T|F, S) ∝ p(F|T, S)p(T).

The likelihood, p(F|T, S), reflects a process of randomly 
sampling items from the display while replacing distractors 
but without replacing targets: When a target is found, it cannot 
be marked again, but when a distractor is found, it continues to 
be sampled during the rest of the search (Horowitz & Wolfe, 
2001).3 For example, in searching for 5 targets among 40 
items, the probability of finding a target is 5/40 on each draw 
until the first target is found, then the probability of finding the 
second target on subsequent draws becomes 4/39, and so forth. 
The pseudo-hypergeometric distribution that results from such 
partial replacement has no analytical form, but it can be 
numerically calculated with high precision for the range of F, 
S, and T values we used here.

Using the posterior probability of T, p(T|F, S), and the num-
ber of items in the display, N (always 40), we calculated the 
expected probability of the next sampled item being a target 
by marginalizing over T:
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where γ is the time it takes to search one more item.
We ran the model on the specific time courses and trials of 

each participant in each condition; thus, we could predict stop-
ping times for every trial that went into our empirical aver-
ages. For each trial, we considered the point when the last 
target was found (or the start of the trial on trials where no 
targets were found) and calculated Π in 500-ms intervals from 
that point. Thus, we could determine when Π, as calculated by 
the ideal observer, would fall below that participant’s empiri-
cal value of Γ. We took the point at which this happened as the 
stopping time for the ideal observer. These calculations were 
predicated on the conversion of the number of items searched 

n–
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to time by assuming that each item took 250 ms to search—
this value was based on search slope measures obtained in a 
supplement experiment (see the Supplemental Material avail-
able online).

Figure 3b shows that the model captured the major qualita-
tive features of human behavior in our search task. When no 
targets have been found, searchers in the 75% condition have 
cause for optimism and would be expected to search for a long 
time before stopping; in contrast, searchers in the 25% condi-
tion should be pessimistic about the prospects of the display 
containing any targets at all. However, once a target has been 
found, these expectations reverse: Searchers in the 75% condi-
tion should not expect to find any more targets, and observers 
in the 25% condition should expect to find many more. This 
should result in observers in the 25% condition searching lon-
ger for subsequent targets. The model searched longer in the 
75% condition than in the 25% condition when no targets had 
been found, and importantly, this relationship reversed when 
one or more targets had been found. In the 25% condition, 
when most trials did not contain targets, the model correctly 
interpreted the first target as good news (Olsson & Brown, 
2006) and persevered in searching for additional targets. How-
ever, in the 75% condition, finding the first target indicated 
that few additional targets remained, so there was little point in 
searching for them.

Although the ordering of conditions corresponded well to 
the order of behavioral results, there was a striking difference 
between the magnitude of the actual and modeled searching 
times when no targets had been found in the 25% and 75% 
conditions. This suggests that participants in those conditions 
were taking a conservative approach to target-absent trials by 
spending almost as much time searching on those trials as they 
did on average across the experiment rather than fully adjust-
ing to the environmental search statistics. In contrast, for the 
50% condition, the model and the empirical search data 
aligned quite well when no targets have been found. This sug-
gests that searchers may not be effectively learning the propor-
tion of trials that do and do not have targets and thus may be 
acting as if the prevalence of trials with targets is close to 50% 
when no target has been found. However, they may be better 
able to learn the distribution of targets in target-present trials.

Prior expectations about target distributions
Although human behavior qualitatively matched that of the 
ideal observer, the quantitative effects predicted by our model 
were far larger than those shown in the behavioral results. 
Such a difference would naturally arise if participants came 
into our experiment expecting a relatively homogeneous dis-
tribution of targets across displays. To capture such an expec-
tation, we added priors to our model favoring homogeneity,  
with two parameters corresponding to the strength of the  
prior favoring a 50% chance of a target-present trial and the 
strength of the prior favoring a 0.5 geometric-rate parameter. 

We formalized the prior over target-present trials as a beta dis-
tribution over the probability that a display contains a target 
(with parameters α = 0.5 × θ, β = 0.5 × θ); thus, θ corresponds 
to the strength of the prior favoring a 50% chance of a target-
present display, intuitively interpreted as the number of  
displays that had been previously seen with 50% target 
prevalence.

We also included a beta prior on the geometric-rate param-
eter describing the number of targets in a display, also favoring 
a rate parameter of 0.5 (reflecting an expected value of two 
targets per target-present display) and parameterized by λ, 
which corresponds intuitively to the number of target-present 
trials previously seen with that rate parameter. Using these 
parameters, we could estimate the strength of the homogeneity 
priors that best describe the overall group performance. The 
values we found (θ = 519 and λ = 296) indicate that partici-
pants seemed to have a stronger expectation that roughly 50% 
of trials ought to contain targets, as compared with their expec-
tation about the number of targets on target-present trials.

Figure 3c shows model predictions using this best-fitting 
prior. Without this prior expectation, the correlation among 
model predictions and stopping times on individual trials 
across all participants and conditions was .42 (r2 = .17; n = 
7,473 trials). By adding the homogeneity priors, the correla-
tion significantly improved (r = .59, r2 = .34; Fisher Z = 14.1, 
p < .001). This improvement suggests that participants came to 
the present experiment with an expectation of 50% target 
prevalence and an even target distribution. To convey how 
much of an effect this prior had, we can estimate the parame-
ters that participants must have learned by the end of the 
experiment. We found that for the 25%, 50%, and 75% condi-
tions, respectively, participants learned that the average rates 
of targets per trial were 0.44, 0.50, and 0.57, and that the  
geometric-rate parameters were 0.42, 0.50, and 0.60. The fact 
that the 50% condition matched this homogeneous prior 
expectation may explain the greater correspondence in this 
condition between behavior and modeled performance with-
out the homogeneity prior.

General Discussion
The results of the present experiment demonstrate that search-
ers can adapt to complex statistics of their search environment 
in sophisticated ways: Participants terminated their searches 
quickly when the presence of an additional target was unlikely 
but searched longer when finding an additional target was 
more likely. This was observed both within participants (with 
a main effect of number of targets found) and between groups 
(with an interaction between condition and number of targets 
found), which suggests that people optimize their search strat-
egies for their environment. Although the searchers in the 50% 
condition performed nearly optimally, searchers in the 25% 
and 75% conditions deviated from optimal predictions by not 
sufficiently adjusting to the target distributions.
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Only one other study to date has examined sensitivity to 
patchy target distributions in a human visual cognition task: 
Hutchinson et al. (2008) presented participants with a simu-
lated fishing task, in which fish appeared at a rate dependent 
on the number remaining in the pond. Participants could 
switch to a new pond at any time (with a fixed transition dura-
tion). The researchers found that participants generally 
responded appropriately when presented with clustered targets 
but dwelled longer than optimal on a given pond. Our fine-
grained analysis showed deviations in both directions from 
optimality depending on the number of targets found and the 
target distribution: Although people adjust to the target distri-
bution, they do not adjust as much as is optimal.

To date, no model of multiple-target visual search has been 
put forward to explain search-termination behavior. We propose 
that human visual search can be modeled in the same manner as 
foraging behavior in animals, which suggests a wealth of pos-
sibilities for future studies. Our experiment demonstrates that 
although searchers do not adjust their strategies as much as 
would be optimal, they are sensitive to the same factors used by 
the ideal observer model to determine stopping times. We sus-
pect that the same strategic considerations underlying the 
behavior we observed likely account for target-prevalence 
effects (Wolfe & Van Wert, 2010) and satisfaction-of-search 
effects (Fleck et al., 2010) in visual search, with participants 
maximizing their rate of target finding on the basis of the statis-
tics of the search environment. The generality of this mecha-
nism has broad implications; for example, artificially modifying 
target-distribution statistics, such as priming baggage screeners 
with daily training runs of multiple-target bags (cf. Wolfe et al., 
2007), may be an effective way to enhance sensitivity in critical 
multiple-target visual searches.
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Notes
1.  Because of logistical considerations, we were unable to collect 
sufficient data from these searchers to address why they were  
particularly slow, but the question may well be worth pursuing 
separately.
2.  Only half the participants in the 75% condition found more than 
three targets on any trial.
3.  Other researchers have argued that search can occur with limited 
distractor replacement (i.e., search with memory; e.g., Peterson, 
Kramer, Wang, Irwin, & McCarley, 2001). In our empirical data, 
distractor replacement did not appear to be complete, but our data 
were much closer to a model with complete distractor replacement 
than a model with no distractor replacement at all.
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